57 research outputs found

    On the remote sensing of oceanic and atmospheric convection in the Greenland Sea by synthetic aperture radar

    No full text
    In this paper we discuss characteristic properties of radar signatures of oceanic and atmospheric convection features in the Greenland Sea. If the water surface is clean (no surface films or ice coverage), oceanic and atmospheric features can become visible in radar images via a modulation of the surface roughness, and their radar signatures can be very similar. For an unambiguous interpretation and for the retrieval of quantitative information on current and wind variations from radar imagery with such signatures, theoretical models of current and wind phenomena and their radar imaging mechanisms must be utilized. We demonstrate this approach with the analysis of some synthetic aperture radar (SAR) images acquired by the satellites ERS-2 and RADARSAT-1. In once case, an ERS-2 SAR image an a RADARSAT-1 ScanSAR image exhibit pronounced cell-like signatures with length scales on the order of 10-20 km and modulation depths of about 5-6 dB and 9-10 dB, respectively. Simulations with a numerical SAR imagaing model and various input current and wind fields reveal that the signatures in both images can be expained consistently by wind variations on the order of±2.5 ms, but not by surface current variations on realistic orders of magnitude. Accordingly, the observed features must be atmospheric convection cells. This is confirmed by visible typical cloud patterns in a NOAA AVHRR image of the test scenario. In another case, the presence of an oceanic convective chimney is obvious from in situ data, but no signatures of it are visible in an ERS-2 SAR image. We show by numerical simulations with an oceanic convection model and our SAR imaging model that this is consistent with theoretical predictions, since the current gradients associated with the observed chimney are not sufficiently strong to give rise to significant signatures in an ERS-2 SAR image under the given conditions. Further model results indicate that it should be generally difficult to observe oceanic convection features in the Greenland Sea with ERS-2 or RADARSAT-1 SAR, since their signatures resulting from pure wave-current interaction will be too weak to become visible in the noisy SAR images in most cases. This situation will improve with the availability of future high-resolution SARs such as RADARSAT-2 SAR in fine resolution mode (2004) and TerraSAR-X (2005) which will offer significantly reduced speckle noise fluctuations at comparable spatial resolutions and thus a much better visibility of small image variations on spatial scales on the order of a few hundred meters

    Circulation and oxygen cycling in the Mediterranean Sea: Sensitivity to future climate change

    Get PDF
    Climate change is expected to increase temperatures and decrease precipitation in the Mediterranean Sea (MS) basin, causing substantial changes in the thermohaline circulation (THC) of both the Western Mediterranean Sea (WMS) and Eastern Mediterranean Sea (EMS). The exact nature of future circulation changes remains highly uncertain, however, with forecasts varying from a weakening to a strengthening of the THC. Here we assess the sensitivity of dissolved oxygen (O2) distributions in the WMS and EMS to THC changes using a mass balance model, which represents the exchanges of O2 between surface, intermediate, and deep water reservoirs, and through the Straits of Sicily and Gibraltar. Perturbations spanning the ranges in O2 solubility, aerobic respiration kinetics, and THC changes projected for the year 2100 are imposed to the O2 model. In all scenarios tested, the entire MS remains fully oxygenated after 100 years; depending on the THC regime, average deep water O2 concentrations fall in the ranges 151–205 and 160–219 µM in the WMS and EMS, respectively. On longer timescales (>1000 years), the scenario with the largest (>74%) decline in deep water formation rate leads to deep water hypoxia in the EMS but, even then, the WMS deep water remains oxygenated. In addition, a weakening of THC may result in a negative feedback on O2 consumption as supply of labile dissolved organic carbon to deep water decreases. Thus, it appears unlikely that climate-driven changes in THC will cause severe O2 depletion of the deep water masses of the MS in the foreseeable future

    Open-ocean convection: observations, theory and models

    Get PDF
    We review what is known about the convective process in the open ocean, in which the properties of large volumes of water are changed by intermittent, deep-reaching convection, triggered by winter storms. Observational, laboratory, and modeling studies reveal a fascinating and complex interplay of convective and geostrophic scales, the large-scale circulation of the ocean, and the prevailing meteorology. Two aspects make ocean convection interesting from a theoretical point of view. First, the timescales of the convective process in the ocean are sufficiently long that it may be modified by the Earth's rotation; second, the convective process is localized in space so that vertical buoyancy transfer by upright convection can give way to slantwise transfer by baroclinic instability. Moreover, the convective and geostrophic scales are not very disparate from one another. Detailed observations of the process in the Labrador, Greenland, and Mediterranean Seas are described, which were made possible by new observing technology. When interpreted in terms of underlying dynamics and theory and the context provided by laboratory and numerical experiments of rotating convection, great progress in our description and understanding of the processes at work is being made

    On the relationship between the water mass pathways and eddy variability in the Western Mediterranean Sea

    Get PDF
    The role of eddies on the formation and spreading of water masses in the Western Mediterranean Sea is studied with an ocean general circulation model. The model is forced with interannually variable surface forcing for the years from 1979 to 1999. It is found that the model reproduces the major features of the observed mesoscale variability in the Gulf of Lions and the large eddies evolution in the Algerian Basin. The seasonal evolution of circulation in the Gulf of Lions and processes of spreading of newly formed intermediate deep waters in the postconvection period is studied for years 1987 and 1992. The model results are compared with data from observations. It is shown that the instability of the transition zone between old and newly formed deep waters, which takes place after the violent mixing stages of the deep convection, leads to collapse of the mixed patch and formation of mesoscale eddies. Some of these eddies propagate out of the Gulf of Lions transporting deep waters into the Algerian Basin. The rest of the mesoscale eddies filled with newly formed deep waters remain in the Gulf of Lions and tend to merge and enlarge. After the cyclonic eddies reach the Algerian Basin they interact with the intense mesoscale field existing there. The energy analysis shows that the winter and spring are seasons of intensified baroclinic instability of the mean flow in the two regions of interest, the Gulf of Lions and Algerian Basin. The kinetic energy is released by baroclinic instability in spring and summer. The spring spectra in the two regions have maximums at horizontal scales of about 80-100 km which is the typical scale of the eddies in the model. These eddies propagate a cyclonic circuit. The resulting eddy-induced mass transport in deep and intermediate layers is directed out of the Gulf of Lions and toward the Gibraltar Strait. Equivalently, we can argue the intermediate and deep waters conveyor belt of the Western Mediterranean Sea is eddy-drive

    Mixing in the Deep Waters of the Western Mediterranean

    No full text
    In terms of the overall mixing environment, the Mediterranean Sea has relatively small tides and relatively weak winds compared with the greater ocean environment, so vertical diffusion due to mechanical mixing is likely to be generally smaller than in the open ocean. As the western Mediterranean deep water (WMDW) is naturally fresher and colder than the Levantine intermediate water (LIW), salinity and temperature both decrease downward below the LIW core toward the deep water. In the halocline-thermocline between the core of LIW and the deep water, warmer saltier waters overlie colder fresher waters and in such a region salt finger mixing processes can be effective mixing agents transporting salt, heat, and density downward. For the deep western Mediterranean, vertical diffusion due to mechanical mixing is expected to be small; and downward mixing of heat salt and density is expected to be substantial in the halocline-thermocline 400–1500-m depth
    corecore